Coloring graphs from lists with bounded size of their union

نویسندگان

  • Daniel Král
  • Jirí Sgall
چکیده

A graph G is k-choosable if its vertices can be colored from any lists L(v) of colors with jL(v)j k for all v 2 V (G). A graph G is said to be (k; u)-choosable if its vertices can be colored from any lists L(v) with jL(v)j k, for all v 2 V (G), and with jSv2V (G) L(v)j u. For each 3 k u, we construct a graph G which is (k; u)-choosable but not (k; u+1)-choosable. On the other hand, it is proven that each (k; 2k 1)choosable graph G is O(k ln k 24k)-choosable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

Choosability with union separation

List coloring generalizes graph coloring by requiring the color of a vertex to be selected from a list of colors specific to that vertex. One refinement of list coloring, called choosability with separation, requires that the intersection of adjacent lists is sufficiently small. We introduce a new refinement, called choosability with union separation, where we require that the union of adjacent...

متن کامل

Hard coloring problems in low degree planar bipartite graphs

In this paper we prove that the PRECOLORING EXTENSION problem on graphs of maximum degree 3 is polynomially solvable, but even its restricted version with 3 colors is NP-complete on planar bipartite graphs of maximum degree 4. The restricted version of LIST COLORING, in which the union of all lists consists of 3 colors, is shown to be NP-complete on planar 3-regular bipartite graphs. © 2006 Els...

متن کامل

DRAFT: List Coloring and n-Monophilic Graphs

In 1990, Kostochka and Sidorenko proposed studying the smallest number of list-colorings of a graph G among all assignments of lists of a given size n to its vertices. We say a graph G is n-monophilic if this number is minimized when identical n-color lists are assigned to all vertices of G. Kostochka and Sidorenko observed that all chordal graphs are n-monophilic for all n. Donner (1992) showe...

متن کامل

Sum List Coloring 2*n Arrays

A graph is f -choosable if for every collection of lists with list sizes specified by f there is a proper coloring using colors from the lists. The sum choice number is the minimum over all choosable functions f of the sum of the sizes in f . We show that the sum choice number of a 2 × n array (equivalent to list edge coloring K2,n and to list vertex coloring the cartesian product K22Kn) is n2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2005